Design and Optimization of Equal Split Broadband Microstrip Wilkinson Power Di- Vider Using Enhanced Particle Swarm Opti- Mization Algorithm

نویسندگان

  • D. Wang
  • H. Zhang
  • T. Xu
  • H. Wang
  • G. Zhang
چکیده

An enhanced particle swarm optimization (EPSO) algorithm is proposed. To improve convergence accuracy and velocity, we introduce a quadratic interpolation method and perturbation to personal best particles in EPSO. Then, a design procedure based on the EPSO is proposed for the design and optimization of equal split broadband microstrip Wilkinson power dividers (MWPDs). A set of numerical examples and fabricated samples are presented to validate the improvement of the proposed EPSO. Even-odd mode analysis is incorporated in the design procedure to calculate the scattering matrix of the MWPD on the basis of the dispersion and dissipation microstrip line model. A fitness function is then constructed according to the scattering parameters. The optimized widths and lengths of microstrip lines and values of isolation resistors are directly obtained by minimizing the fitness function. EPSO is also compared with the genetic algorithm (GA), standard particle swarm optimization (PSO) and improved particle swarm optimization (IPSO).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Analysis of Quad-Band Wilkinson Power Divider

In this paper, the design of equal-split quad-band Wilkinson power divider is presented. The design consists of two quad-band transmission line transformers and four isolation resistors. Standard transmission line theory and even/odd modes analyses are used to obtain closed form expressions that are solved using particle swarm optimization technique to find the required divider parameters (leng...

متن کامل

Design and Fabrication of a 9–11 GHz Balanced Low Noise Amplifier Using HJFET

This paper describes the design of an X-band balanced low noise amplifier (LNA) using an available HJFET device. The balanced LNA consists of a pair of electrically similar transistors whose input and output signals are divided or combined by 3 dB two-stage Wilkinson power dividers. The proposed balanced LNA is fabricated and measured. The measured results show that the noise figure is 1.30 dB ...

متن کامل

Design and Optimization of Multi-Band Wilkinson Power Divider

In this paper, a general and easy procedure for designing the symmetrical Wilkinson power divider that achieves equal-power split at N arbitrary frequencies is introduced. Each quarter-wave branch in the conventional Wilkinson divider is replaced by N sections of transmission lines, and the isolation between the output ports is achieved by using N resistors. The design parameters are the charac...

متن کامل

Economic Dispatch of Thermal Units with Valve-point Effect using Vector Coevolving Particle Swarm Optimization Algorithm

Abstract: This paper is intended to reduce the cost of producing fuel from thermal power plants using the problem of economic distribution. This means that in order to determine the share of each unit, considering the amount of consumption and restrictions, including the ones that can be applied to the rate of increase, the prohibited operating areas and the barrier of the vapor barrier, the pr...

متن کامل

Load Frequency Control in Power Systems Using Improved Particle Swarm Optimization Algorithm

The purpose of load frequency control is to reduce transient oscillation frequencies than its nominal valueand achieve zero steady-state error for it.A common technique used in real applications is to use theproportional integral controller (PI). But this controller has a longer settling time and a lot of Extramutation in output response of system so it required that the parameters be adjusted ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011